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mistral-package Methods In Structural Reliability Analysis

Description

Provide tools for structural reliability analysis (failure probability and quantile of model/function
outputs).
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Details

Package: mistral
Type: Package
License: GPL-2

This package provides tools for structural reliability analysis:

* Calculate failure probability with FORM method and importance sampling.

* Calculate failure probability with crude Monte Carlo method

* Calculate failure probability with Subset Simulation algorithm

* Calculate failure probability with metamodel based algorithms : AKMCS, SMART and MetalS
* Calculate failure probability with a metamodel based Subset Simulation : S2ZMART

» Wilks formula: Compute a quantile (or tolerance interval) with a given confidence level from
ai.i.d. sample,

* Wilks formula: Compute the minimal sample size to estimate a quantile with a given confi-
dence level,

* Calculate a quantile under monotonicity constraints

Author(s)

Clement Walter, Gilles Defaux, Bertrand Iooss, Vincent Moutoussamy, with contributions from
Nicolas Bousquet, Claire Cannamela and Paul Lemaitre (maintainer: Bertrand looss <biooss@yahoo. fr>)

References

S.-K. Au, J. L. Beck. Estimation of small failure probabilities in high dimensions by Subset Simu-
lation. Probabilistic Engineering Mechanics, 2001

J.-M. Bourinet, F. Deheeger, M. Lemaire. Assessing small failure probabilities by combined Subset
Simulation and Support Vector Machines. Structural Safety, 2011

N. Bousquet. Accelerated monte carlo estimation of exceedance probabilities under monotonicity
constraints. Annales de la Faculte des Sciences de Toulouse. XXI(3), 557-592, 2012

H.A. David and H.N. Nagaraja. Order statistics, Wiley, 2003

F. Deheeger. Couplage mecano-fiabiliste : 2SMART - methodologie d’apprentissage stochastique
en fiabilite. PhD. Thesis, Universite Blaise Pascal - Clermont II, 2008

A. Der Kiureghian, T. Dakessian. Multiple design points in first and second-order reliability. Struc-
tural Safety, vol.20, 1998

O. Ditlevsen and H.O. Madsen. Structural reliability methods, Wiley, 1996

V. Dubourg. Meta-modeles adaptatifs pour 1’analyse de fiabilite et 1’optimisation sous containte
fiabiliste. PhD. Thesis, Universite Blaise Pascal - Clermont II, 2011

B. Echard, N. Gayton, M. Lemaire. AK-MCS : an Active learning reliability method combining
Kriging and Monte Carlo Simulation

M. Lemaire, A. Chateauneuf and J. Mitteau. Structural reliability, Wiley Online Library, 2009
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J. Morio and M. Balesdent. Estimation of rare event probabilities in complex aerospace and other
systems. Woodhead Publishing, 2016

V. Moutoussamy. Contributions to structural reliability analysis: accounting for monotonicity con-
straints in numerical models, PhD Thesis of Universite de Toulouse, France, 2015

W.T. Nutt and G.B. Wallis. Evaluation of nuclear safety from the outputs of computer codes in the
presence of uncertainties. Reliability Engineering and System Safety, 83:57-77, 2004

P.-H. Waarts. Structural reliability using finite element methods: an appraisal of DARS, Directional
Adaptive Response Surface Sampling. PhD. Thesis, Technical University of Delft, The Netherlands,
2000

C. Walter. Using Poisson processes for rare event simulation, PhD Thesis of Universite Paris
Diderot, France, 2016

S.S. Wilks. Determination of Sample Sizes for Setting Tolerance Limits. Annals Mathematical
Statistics, 12:91-96, 1941

Examples

HHHEHAAEREEE FORM  ##HHHHHEHH
# u.dep is a starting point for the research of the Most Probable Failing Point
# N.calls is a total number of calls
form <- mistral::FORM(dimension = 2, mistral::kiureghian, N.calls = 1000,
u.dep = ¢(0,0))
form$p

# use IS=TRUE to use an Importance Sampling scheme with a Gaussian standard
# proposal distribution centred at the MPFP
form.IS <- mistral::FORM(dimension = 2, mistral::kiureghian, N.calls = 1000,
u.dep = c(90,0),
IS = TRUE)
form.IS$p

HHHHHHEAAEE Wilks #HHHEHEHHE

N <- WilksFormula(@.95,0.95,order=1)

print(N)
AKMCS Active learning reliability method combining Kriging and Monte
Carlo Simulation
Description

Estimate a failure probability with the AKMCS method.
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Usage

AKMCS (
dimension,
1sf,
N = 5e+0@5,
N1 = 10 * dimension,
Nmax = 200,
Nmin = 2,
X = NULL,
y = NULL,

failure = 0,

precision = 0.05,
bayesian = TRUE,
compute.PPP = FALSE,
meta_model = NULL,

kernel = "matern5_2",
learn_each_train = TRUE,
crit_min = 2,

lower.tail = TRUE,
limit_fun_MH = NULL,
failure_MH = 0,
sampling_strategy = "MH",
first_DOE = "Gaussian"”,
seeds = NULL,

seeds_eval = limit_fun_MH(seeds),
burnin = 30,

plot = FALSE,
limited_plot = FALSE,
add = FALSE,

output_dir = NULL,
verbose = 0

)
Arguments
dimension dimension of the input space.
1sf the function defining the failure/safety domain.
N Monte-Carlo population size.
N1 size of the first DOE.
Nmax maximum number of calls to the LSF.
Nmin minimum number of calls during enrichment step.
X coordinates of already known points.
y value of the LSF on these points.
failure failure threshold.

precision maximum desired cov on the Monte-Carlo estimate.
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bayesian estimate the conditional expectation E_X [ P[meta(X)<failure] ].

compute.PPP to simulate a Poisson process at each iteration to estimate the conditional ex-
pectation and the SUR criteria based on the conditional variance: h (average
probability of misclassification at level failure) and I (integral of h over the
whole interval [failure, infty))

meta_model provide here a kriging metamodel from km if wanted.

kernel specify the kernel to use for km.

learn_each_train
specify if kernel parameters are re-estimated at each train.

crit_min minimum value of the criteria to be used for refinement.
lower.tail as for pxxxx functions, TRUE for estimating P(Isf(X) < failure), FALSE for
P(Isf(X) > failure)

limit_fun_MH define an area of exclusion with a limit function.

failure_MH the theshold for the limit_fun_MH function.
sampling_strategy
either MH for Metropolis-Hastings of AR for accept-reject.

first_DOE either Gaussian or Uniform, to specify the population on which clustering is
done. Set to "No" for no initial DoE (use together with a first DoE given in X for
instance).

seeds if some points are already known to be in the appropriate subdomain.

seeds_eval value of the metamodel on these points.

burnin burnin parameter for MH.

plot set to TRUE for a full plot, ie refresh at each iteration.

limited_plot set to TRUE for a final plot with final DOE, metamodel and LSF.

add if plots are to be added to a current device.

output_dir if plots are to be saved in jpeg in a given directory.

verbose either O for almost no output, 1 for medium size output and 2 for all outputs.
Details

AKMCS strategy is based on a original Monte-Carlo population which is classified with a kriging-
based metamodel. This means that no sampling is done during refinements steps. Indeed, it tries
to classify this Monte-Carlo population with a confidence greater than a given value, for instance
‘distance’ to the failure should be greater than crit_min standard deviation.

Thus, while this criterion is not verified, the point minimizing it is added to the learning database
and then evaluated.

Finally, once all points are classified or when the maximum number of calls has been reached, crude
Monte-Carlo is performed. A final test controlling the size of this population regarding the targeted
coefficient of variation is done; if it is too small then a new population of sufficient size (considering
ordre of magnitude of found probability) is generated, and algorithm run again.
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Value

An object of class 1ist containing the failure probability and some more outputs as described

below:

cov
Ncall
X
y
h
I

meta_fun

meta_model

points
meta_eval

z_meta

Note

the estimated failure probability.

the coefficient of variation of the Monte-Carlo probability estimate.

the total number of calls to the 1sf.

the final learning database, ie. all points where 1sf has been calculated.
the value of the 1sf on the learning database.

the sequence of the estimated relative SUR criteria.

the sequence of the estimated integrated SUR criteria.

the metamodel approximation of the 1sf. A call output is a list containing the
value and the standard deviation.

the final metamodel. An S4 object from DiceKriging. Note that the algorithm
enforces the problem to be the estimation of P[Isf(X)<failure] and so using ‘pre-
dict’ with this object will return inverse values if lower.tail==FALSE; in this
scope prefer using directly meta_fun which handles this possible issue.

points in the failure domain according to the metamodel.
evaluation of the metamodel on these points.

if plot==TRUE, the evaluation of the metamodel on the plot grid.

Problem is supposed to be defined in the standard space. If not, use UtoX to do so. Furthermore,
each time a set of vector is defined as a matrix, ‘nrow’ = dimension and ‘ncol’ = number of vector
to be consistent with as.matrix transformation of a vector.

Algorithm calls Isf(X) (where X is a matrix as defined previously) and expects a vector in return.
This allows the user to optimise the computation of a batch of points, either by vectorial compu-
tation, or by the use of external codes (optimised C or C++ codes for example) and/or parallel
computation; see examples in MonteCarlo.

Author(s)

Clement WALTER <clementwalter@icloud.com>

References

* B. Echard, N. Gayton, M. Lemaire:
AK-MCS : an Active learning reliability method combining Kriging and Monte Carlo Simula-

tion

Structural Safety, Elsevier, 2011.
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* B. Echard, N. Gayton, M. Lemaire and N. Relun:
A combined Importance Sampling and Kriging reliability method for small failure probabili-
ties with time-demanding numerical models
Reliability Engineering and System Safety,2012

* B. Echard, N. Gayton and A. Bignonnet:
A reliability analysis method for fatigue design
International Journal of Fatigue, 2014

See Also

SubsetSimulation MonteCarlo MetalS km (in package DiceKriging)

Examples

## Not run:
res = AKMCS(dimension=2,1sf=kiureghian,plot=TRUE)

#Compare with crude Monte-Carlo reference value
N = 500000

dimension = 2

U = matrix(rnorm(dimension*N),dimension,N)

G = kiureghian(U)

P = mean(G<0)

cov = sqrt((1-P)/(NxP))

## End(Not run)

#See impact of kernel choice with serial function from Waarts:
waarts = function(u) {
u = as.matrix(u)
b1 = 3+(ul1,]1-ul2,1)*2/10 - sign(u[1,] + ul2,1)*(ul1,]+ul2,]1)/sqrt(2)
b2 = sign(ul2,1-ul1,1)*(ul1,]1-ul2,1)+7/sqrt(2)
val = apply(cbind(b1, b2), 1, min)

3
## Not run:
res = list()

res$matern5_2 = AKMCS(2, waarts, plot=TRUE)

res$matern3_2 = AKMCS(2, waarts, kernel="matern3_2", plot=TRUE)
res$gaussian AKMCS(2, waarts, kernel="gauss"”, plot=TRUE)
res$exp AKMCS(2, waarts, kernel="exp", plot=TRUE)

#Compare with crude Monte-Carlo reference value
N = 500000

dimension = 2

U = matrix(rnorm(dimension*N),dimension,N)

G = waarts(U)

P = mean(G<0)

cov = sqrt((1-P)/(NxP))
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## End(Not run)

BMP Bayesian Moving Particles

Description

This function runs the Bayesian Moving Particles algorithm for estimating extreme probability and
quantile.

Usage

BMP (
dimension,
1sf,
q,
N = 1000,
N.final = N,
N.iter = 30,
adaptive = FALSE,
N.DoE = 5 * dimension,

firstDoE = "uniform”,

radius = gqnorm(le-10, lower.tail = FALSE),
X,

Y,

covariance = NULL,

learn_each_train = Inf,

km.param = list(nugget.estim = TRUE, multistart =1, optim.method = "BFGS", coef.trend
=a),

burnin = 20,

fast = TRUE,

sur = list(integrated = TRUE, r = 1, approx.pnorm = FALSE),

lower.tail = TRUE,

save.dir,

plot = FALSE,

plot.1lsf = TRUE,

plot.lab = c(”"x_1", "x_2"),

chi2 = FALSE,
verbose = 1,
breaks
)
Arguments
dimension the dimension of the input space.

1sf the function defining the RV of interest Y = Isf(X).
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q
N

N.final

N.iter

adaptive

N.DoE

firstDoE

radius

X
y

covariance

BMP

a given quantile to estimate the corresponding probability.
the total number of Poisson processes during the refinement step.
the total number of Poisson processes for the final alpha estimate.

the total number of iteration of the algorithm, ie that total number of calls to the
1sf will be N.DoE + N.iterxr.

if the algorithm should stop automatically if the stopping criterion is verified,
precisely the mean probability of misclassification of the particles being over a
given threshold.

the number of points for the initial Design of Experiment

default is "uniform" for a random uniform sampling over a sphere of radius
radius. Also available "maximim" for a maximim LHS.

the size of the radius of the sphere for uniform DoE or the semi length of the
interval on each dimension for maximin LHS

(optional) a first Design of Experiemnt to be used instead of building a new DoE
the value of 1sf on the X

(optional) to give a covariance kernel for the km object.

learn_each_train

km.param

burnin

fast

sur

lower.tail

save.dir
plot
plot.1lsf

plot.lab
chi2
verbose

breaks

a integer: after this limit the covariance parameters are not learnt any more and
model is just updated with the new datapoints.

(optional) list of parameters to be passed to DiceKriging: :km.

a burnin parameter for Markov Chain drawing of the metamodel based Poisson
process (this does not change the number of calls to 1sf).

in current implementation it appears that the call to the metamodel is faster when
doing batch computation. This parameter lets do the Markov chain the other
way around: instead of first selecting a starting point and then applying burnin
times the transition kernel, it creates a working population by apply the kernel
to all the particles and then makes some moves with the generated discretised
distribution.

a list containing any parameters to be passed to estimateSUR. Default is sur$integrated=TRUE
and sur$r=1 for a one step ahead integrated SUR criterion.

as for pxxxx functions, TRUE for estimating P(Isf(X) < q), FALSE for P(Isf(X)
> Q).
(optional) a directory to save the X and y at each iteration.

to plot the DoE and the updated model.

to plot the contour of the true 1sf. Note that this requires its evaluation on a grid
and should be used only on toy examples.

the labels of the axis for the plot.
for a chi2 test on the number of events.
controls the level of outputs of the algorithm.

optional, for the final histogram if chi2 == TRUE.
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Details
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The Bayesian Moving Particles algorithm uses the point process framework for rare event to it-
eratively estimate the conditional expectation of the (random) limit-state function, to quantify the
quality of the learning and to propose a new point to be added to the model with a SUR criterion.

Value

An object of class 1ist containing the outputs described below:

alpha
alpha.seq
cv2
cv.seq

h

I

sur_min

sur_stat

q
ecdf

L_max

PPP

meta_fun

model

model.first
alpha_int
moves

chi2

Note

the estimated conditional expectation of the probability.
the sequence of estimated alpha during the refinement step.
an estimate of the squarred coefficient of variation of alpha.
the sequence of the estimated coefficients of variations.

the sequence of the estimated upper bound of the conditional variance divided
by estimated alpha.

the sequence of the estimated integrated h.

a list containing the the sequence of corresponding thresholds and -log proba-
bility of the sample minimising the SUR criterion.

a list containing at each iterations number of points tried for the SUR criterion
as well as the computational spent.

the reference quantile for the probability estimate.
the empirical cdf, i.e. the estimation of the function q -> E(alpha(q)).

the farthest state reached by the random process. Validity range for the ecdf is
then (-Inf, L_max] or [L_max, Inf).

the last Poisson process generated with N. final particles.

the metamodel approximation of the 1sf. A call output is a list containing the
value and the standard deviation.

the final metamodel. An S4 object from DiceKriging. Note that the algorithm
enforces the problem to be the estimation of P[1sf(X)>q] and so using ‘predict’
with this object will return inverse values if lower.tail==TRUE; in this scope
prefer using directly meta_fun which handles this possible issue.

the first metamodel with the intial DoE.
a 95% confidence intervalle on the estimate of alpha.
a vector containing the number of moves for each one of the N.batch particles.

the output of the chisq.test function.

Probleme should be defined in the standard space. Transformations can be made using UtoX and

XtoU functions.

Author(s)

Clement WALTER <clementwalter@icloud.com>
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References

* A. Guyader, N. Hengartner and E. Matzner-Lober:
Simulation and estimation of extreme quantiles and extreme probabilities
Applied Mathematics and Optimization, 64(2), 171-196.

» C. Walter:
Moving Particles: a parallel optimal Multilevel Splitting method with application in quantiles
estimation and meta-model based algorithms
Structural Safety, 55, 10-25.

* J. Bect, L. Li and E. Vazquez:
Bayesian subset simulation
arXiv preprint arXiv:1601.02557

See Also

SubsetSimulation MonteCarlo IRW MP

Examples

# Estimate P(g(X)<0)
## Not run: p <- BMP(dimension = 2, 1sf = kiureghian, q =0, N=100, N.iter = 30, plot = TRUE)

# More extreme event
## Not run: p <- BMP(dimension = 2, 1sf = waarts, q = -4, N = 100, N.iter = 50, plot = TRUE)

# One can also estimate probability of the form P(g(X)>q)
## Not run: p <- BMP(dimension = 2, 1sf = cantilever, q =1/325, N =100, N.iter = 30, plot = TRUE)

cantilever A function calculating the deviation of a cantilever beam.

Description

The limit-state function is defined in the standard space and isoprobabilistic transformation is used
internally.

Usage

cantilever

Format

The function can handle a vector or a matrix with column vectors.
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References

Gayton, N. and Bourinet, J.-M. and Lemaire, M.:
CD2RS: a new statistical approach to the response surface method for reliability analysis.
Structural Safety 25 99-121, 2003.

ComputeDistributionParameter
Compute internal parameters and moments for univariate distribution
functions

Description

Compute the internal parameters needed in the definition of several distribution functions when
unknown

Usage

ComputeDistributionParameter(margin)

Arguments

margin A list containing the definition of the marginal distribution function
Value

margin The updated list
Author(s)

gilles DEFAUX, <gilles.defaux@cea.fr>

Examples

distX1 <- list(type='Lnorm', MEAN=120.@, STD=12.0, P1=NULL, P2=NULL, NAME='X1')
distX1 <- ComputeDistributionParameter(distX1)
print(distX1)
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estimateSUR EstimateSUR

Description

A function for estimating a SUR criterion with a realisation of a PPP

Usage

estimateSUR(
PPP,
xi_PPP_X,

integrated = TRUE,

N_ppp,

method = "discrete”,

SUR_pop,

r = N.batch,

optimcontrol = list(pop.size = 50 * d, max.generations = 10 * d),

approx.pnorm,

J=o0,
N.batch =
verbose

Arguments

PPP
xi_PPP_X
integrated

N_ppp
method

SUR_pop

r

optimcontrol

approx.pnorm
J
N.batch

verbose

foreach: :getDoParWorkers(),

the Poisson point process generated to get alpha.

the output of xi(cbind(PPP$X, PPP$final_X)).

boolean to specify of SUR criterion is standard or integrated.

the number of Poisson processes used for the SUR criterion estimation.

eiter "genoud" for an optimisation using the package rgenoud or "discrete" for
a discrete search over SUR_pop.

if optimcontrol$method=="discrete"”, SUR_pop is the population onto which
minimizer is sought. Should be a matrix d x n.

number of points to be added to the DoE.

a list of control parameters for the optimisation of the SUR criterion using the
rgenoud package.

(optional) an approximation of base pnorm function running faster.
the center of an interval of size 8 for pnorm approximation.
Number of batchs for parallel computation.

to control the print level of the algorithm

further arguments to be passed to fSUR.
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Value
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a list containing the points minimising the criterion

FORM

First-order reliability method

Description

The First-Order Reliability Method computes an estimation of the failure probability by approxi-
mating the limit-state function at the Most Probable Failure Point with a hyperplane.

u.dep = rep(@, dimension),

Usage
FORM(
dimension,
1sf,
N.calls = 100,
eps = le-07,

Method = "HLRF",

IS = FALSE,

IS.ratio = 0.5,

plot = FALSE,

plot.1lsf = FALSE,
plot.lab = c("x_1", "x_2")

Arguments

dimension
1sf

u.dep
N.calls
eps
Method

IS
IS.ratio
plot

plot.1lsf

plot.lab

the dimension of the input space.

the limit-state function.

the starting point for the MPFP search.

the total number of calls for the whole algorithm.

stopping criterion: distance of two points between two iterations.

choice of the method to search the design point: "AR" for Abdo-Rackwitz and
"HLRF" for Hasofer-Lindt-Rackwitz-Fiessler.

"TRUE" for using importance Sampling method with an standard Gaussian im-
portance density centred at the MPFP.

ratio of N.calls for the search of the design point by FORM. Default = 0.5. 1-
IS.ratio = the remaining ratio to be used for importance sampling.

to plot the generated samples.

a boolean indicating if the 1sf should be added to the plot. This requires the
evaluation of the 1sf over a grid and consequently should be used only for il-
lustation purposes.

the x and y labels for the plot.
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Details

The FORM method has to be used in the standard Gaussian input space. It is designed to estimate
probability of the form P[g(X) < 0] with g the limit-state function. This function has to be
modified accordingly to fit into this framework

Furthermore, it should be able to handle matrix input of column vectors. See the mistral vignette
for more info about 1sf definition

Value

A list containing the following objects

p Failure probability
indice.reliab Reliability index

Ncall Number of calls to f
Design.Point  Coordinates of the design point

fact.imp Importance factors
variance Standard error of the probability estimator (if IS = TRUE)
Interval.conf Confidence interval of the estimator at 0.95 (if IS = TRUE)
DOE List which contains the design of experiments

Author(s)

Vincent MOUTOUSSAMY and Clement WALTER <clementwalter@icloud.com>

References

* O. Ditlevsen and H.O. Madsen. Structural reliability methods, Wiley, 1996

* M. Lemaire, A. Chateauneuf and J. Mitteau. Structural reliability, Wiley Online Library, 2009.

Examples

## Not run:
# u.dep is a starting point for the research of the Most Probable Failing Point
# N.calls is a total number of calls
form <- mistral::FORM(dimension = 2, mistral::kiureghian, N.calls = 1000,
u.dep = c(0,0))
form$p

# use IS=TRUE to use an Importance Sampling scheme with a Gaussian standard
# proposal distribution centred at the MPFP
form.IS <- mistral::FORM(dimension = 2, mistral::kiureghian, N.calls = 1000,
u.dep = c(90,0),
IS = TRUE)
form.IS$p

## End(Not run)
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FORMvO FORM method (old version)

Description

Calculate failure probability by FORM method and important sampling.

Usage

FORMvO(f, u.dep, inputDist, N.calls, eps = le-7,
Method = "HLRF", IS = FALSE, q = 0.5, copula = "unif")

Arguments
f A failure fonction
u.dep A vector, starting point to the research of the design point
inputDist A list which contains the name of the input distribution and their parameters.
For the input "i", inputDistribution[[i]] = list("name_law",c(parametersl,..., pa-
rametersN))
N.calls Number of calls to f allowed
eps Stop criterion : distance of two points between two iterations
Method Choice of the method to research the design point: "AR" for Abdo-Rackwitz
and "HLRF" for Hasofer-Lindt-Rackwitz-Fiessler
IS "TRUE" for using importance Sampling method (applied after FORM which
provides the importance density). Default = "FALSE".
q Ratio of N.calls for the research of the design point by FORM. Default = 0.5.
1-q = the remaining ratio to use importance sampling.
copula Choice of the copula. Default = "unif" (uniform copula)
Details

This function estimate the probability that the output of the failure function is negative using FORM
algorithm. The importance sampling procedure estimate a probability using a Gaussian distribution
centered in the design point with a covariance matrix equal to the indentity.

Value
pf Failure probability
beta Reliability index (beta)
compt.f Number of calls to f

design.point  Coordinates of the design point
fact.imp Importance factors

variance Standard error of the probability estimator (if IS = TRUE)
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conf Confidence interval of the estimator at 0.95 (if IS = TRUE)

X A data frame containing the input design of experiments

y A vector of model responses (corresponding to x)

dy A data frame of model response derivatives (wrt each input and corresponding

to x); for the IS sample, the derivatives are not computed

Author(s)

Vincent Moutoussamy and Bertrand Iooss

References

O. Ditlevsen and H.O. Madsen. Structural reliability methods, Wiley, 1996
M. Lemaire, A. Chateauneuf and J. Mitteau. Structural reliability, Wiley Online Library, 2009.

Examples

## Not run:

distribution = list()

distribution[[1]] = list("gamma"”,c(2,1))
distribution[[2]] = list("gamma"”,c(3,1))

f <= function(X){
X[1]1/sum(X) - gbeta((1e-5),2,3)
3

res <- mistral:::FORMvO(f, u.dep = c(0,0.1), inputDist = distribution,
N.calls = 1000, eps = le-7, Method = "HLRF"”, IS = "TRUE",
g = 0.1, copula = "unif")

names(res)
print(res)

print(res$pf)

## End(Not run)

generateK Generate Standard Gaussian samples with a Gaussian transiiton ker-
nel

Description

Generate Standard Gaussian samples with a Gaussian transiiton kernel

Usage

generateK(X, N = 100, thinning = 4, sigma = 1, 1sf, burnin = 20)
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Arguments

X the seeds for the Markov Chain. There are as many MC drawn as given seeds

N the number of desired samples"’

thinning the proportion of kept samples, ie. 1 each thinning draw.

sigma the exploration parameter for the transition kernel

1sf a boolean limit-state function for definig a subdomain of the input space.

burnin the burnin parameter, ie. the number of discarded samples before keeping one.
Details

This function generates standard Gaussian samples with a Markov Chain using a suitable transition
kernel

Value

A matrix X with the number of desired samples

Author(s)

Clement WALTER <clementwalter@icloud.com>

Examples

# Get a seed in dimension 2
X <= matrix(rnorm(2), nrow = 2)
X <- generateK(X, N = 1000)

library(ggplot2)
ggplot(as.data.frame(t(X)), aes(x_1,x_2)) + geom_point()

# One can also specify a limit-state function
1sf <- function(X){
sqrt(colSums(X*2)) > 2
3
X <- matrix(c(2, 2), nrow = 2)
X <- generateK(X, N = 1000, 1lsf = 1lsf)

ggplot(as.data.frame(t(X)), aes(x_1,x_2)) + geom_point()
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IRW

IRW

Increasing Randow Walk

Description

Simulate the increasing random walk associated with a real-valued continuous random variable.

Usage

IRW(

dimension,
1sf,

N =109,

q = Inf,
Nevent = Inf,
X,

y = 1sf(X),
K,

burnin = 20,
sigma = 0.3,
last.return =
use.potential
plot = FALSE,
plot.1lsf = FA
print_plot =
output_dir =
plot.lab = c(

Arguments

dimension
1sf

N
q

Nevent

X

y
K

burnin

sigma

last.return

use.potential

TRUE,
= TRUE,

LSE,
FALSE,
NULL,
"x_1", "x_2")

dimension of the input space.

limit state function.

number of particules.

level until which the randow walk is to be generated.
the number of desired events.

to start with some given particles.

value of the 1sf on X.

kernel transition for conditional generations.
burnin parameter.

radius parameter for K.

if the last event should be returned.

tu use a ‘potential’ matrix to select starting point not directly related to the sam-
ple to be moved with the MH algorithm.
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plot

plot.1lsf

print_plot

output_dir

plot.lab

Details
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if TRUE, the algorithm plots the evolution of the particles. This requieres to
evaluate the 1sf on a grid and is only for visual purpose.

a boolean indicating if the 1sf should be added to the plot. This requires the
evaluation of the 1sf over a grid and consequently should be used only for il-
lustation purposes.

if TRUE, print the updated plot after each iteration. This might be slow; use
with a small N. Otherwise it only prints the final plot.

if plots are to be saved in pdf in a given directory. This will be pasted with
‘_IRW.pdf’. Together with print_plot==TRUE this will produce a pdf with a
plot at each iteration, enabling ‘video’ reconstitution of the algorithm.

the x and y labels for the plot

This function lets generate the increasing random walk associated with a continous real-valued
random variable of the form Y = 1sf(X) where X is vectorial random variable.

This random walk can be associated with a Poisson process with parameter N and hence the number
of iterations before a given threshold q is directly related to P[ Isf(X) > q]. It is the core tool of
algorithms such as nested sampling, Last Particle Algorithm or Tootsie Pop Algorithm.

Bascially for N = 1, it generates a sample Y = s f(X) and iteratively regenerates greater than the
found value: Y,,11 ~ u¥ (- | Y > Y,,. This regeneration step is done with a Metropolis-Hastings
algorithm and that is why it is usefull to consider generating several chains all together (N > 1).

The algorithm stops when it has simulated the required number of events Nevent or when it has
reached the sought threshold g.

Value

An object of class 1ist containing the following data:

q
Nevent

Nwmoves

acceptance

the events of the random walk.

the total number of iterations.

the total number of calls to the 1sf.

a matrix containing the final particles.

the value of 1sf on X.

the threshold considered when generating the random walk.
the target number of events when generating the random walk.

the number of rejected transitions, ie when the proposed point was not stricly
greater/lower than the current state.

a vector containing the acceptance rate for each use of the MH algorithm.
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Note

Problem is supposed to be defined in the standard space. If not, use UtoX to do so. Furthermore,
each time a set of vector is defined as a matrix, ‘nrow’ = dimension and ‘ncol’ = number of vector
to be consistent with as.matrix transformation of a vector.

Algorithm calls 1sf(X) (where X is a matrix as defined previously) and expects a vector in return.
This allows the user to optimise the computation of a batch of points, either by vectorial compu-
tation, or by the use of external codes (optimised C or C++ codes for example) and/or parallel
computation; see examples in MonteCarlo.

Author(s)

Clement WALTER <clementwalter@icloud.com>

References

* C. Walter:
Moving Particles: a parallel optimal Multilevel Splitting method with application in quantiles
estimation and meta-model based algorithms
Structural Safety, 55, 10-25.

» C. Walter:
Point Process-based Monte Carlo estimation
Statistics and Computing, in press, 1-18.
arXiv preprint arXiv:1412.6368.

* J. Skilling:
Nested sampling for general Bayesian computation
Bayesian Analysis, 1(4), 833-859.

* M. Huber and S. Schott:
Using TPA for Bayesian inference
Bayesian Statistics 9, 9, 257.

A. Guyader, N. Hengartner and E. Matzner-Lober:
Simulation and estimation of extreme quantiles and extreme probabilities
Applied Mathematics and Optimization, 64(2), 171-196.

See Also
MP

Examples

# Get faililng samples for the kiureghian limit state function
# Failure is defined as 1sf(X) < @ so we have to invert the 1sf
1sf <- function(x) -1xkiureghian(x)

## Not run:

fail.samp <- IRW(2, 1sf, q = @, N = 10, plot = TRUE)
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## End(Not run)

kiureghian A limit-state-function defined by Der Kiureghian

Description

The limit-state function is defined by:
f(x) =b— 29 — k% (z1 — €)?

withb =5,k =0.5and e = 0.1.

Usage

kiureghian

Format

The function can handle a vector or matrix with column vectors.

References

Der Kiureghian, A and Dakessian, T:
Multiple design points in first and second-order reliability
Structural Safety, 20, 1, 37-49, 1998.

LSVM Linear Support Vector Machine under monotonicity constraints

Description

Produce a globally increasing binary classifier built from linear monotonic SVM

Usage

LSVM(x, A.model.lsvm, convexity)

Arguments

X a set of points where the class must be estimated.
A.model.lsvm  a matrix containing the parameters of all hyperplanes.

convexity Either -1 if the set of data associated to the label "-1" is convex or +1 otherwise.
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Details
LSVM is a monotonic binary classifier built from linear SVM under the constraint that one of the
two classes of data is convex.

Value

An object of class integer representing the class of x

res A vector of -1 or +1.

Author(s)

Vincent Moutoussamy

References

* R.T. Rockafellar:
Convex analysis
Princeton university press, 2015.

* N. Bousquet, T. Klein and V. Moutoussamy :
Approximation of limit state surfaces in monotonic Monte Carlo settings

Submitted .
See Also
modelLSVM
Examples
# A limit state function
f <= function(x){ sqgrt(sum(x*2)) - sqrt(2)/2 }
# Creation of the data sets
n <- 200
X <= matrix(runif(2*n), nrow = n)
Y <- apply(X, MARGIN = 1, function(w){sign(f(w))})

#The convexity is known
## Not run:
model.A <- modelLSVM(X, Y, convexity = -1)
m<- 10
X.test <- matrix(runif(2*m), nrow = m)
classOf.X.test <- LSVM(X.test, model.A, convexity = -1)

## End(Not run)
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MetalS

Metamodel based Impotance Sampling

Description

Estimate failure probability by MetalS method.

Usage

MetaIS(

dimension,

1sf,

N = 5e+05,

N_alpha = 100,

N_DOE = 10 * dimension,
N1 = N_DOE * 30,

Ru = 8,
Nmin = 30,
Nmax = 200,

Ncall_max = 1000,
precision = 0.05,
N_seeds = 2 * dimension,
Niter_seed = Inf,
N_alphal00 = 5000,
K_alphal00 = 1,
alpha_int = c(@.1, 10),
k_margin = 1.96,
lower.tail = TRUE,

X = NULL,

y = NULL,

failure = 0,

meta_model = NULL,
kernel = "matern5_2",
learn_each_train = TRUE,
limit_fun_MH = NULL,
failure_MH = 0,
sampling_strategy = "MH",
seeds = NULL,

seeds_eval = limit_fun_MH(seeds),
burnin = 20,

compute.PPP = FALSE,
plot = FALSE,
limited_plot = FALSE,
add = FALSE,

output_dir = NULL,
verbose = @
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Arguments

dimension of the input space

1sf the failure defining the failure/safety domain

N size of the Monte-Carlo population for P_epsilon estimate

N_alpha initial size of the Monte-Carlo population for alpha estimate

N_DOE size of the initial DOE got by clustering of the N1 samples

N1 size of the initial uniform population sampled in a hypersphere of radius Ru

Ru radius of the hypersphere for the initial sampling

Nmin minimum number of call for the construction step

Nmax maximum number of call for the construction step

Ncall_max maximum number of call for the whole algorithm

precision desired maximal value of cov

N_seeds number of seeds for MH algoritm while generating into the margin ( according
to MP*gauss)

Niter_seed maximum number of iteration for the research of a seed for alphalLOO refine-
ment sampling

N_alphal 00 number of points to sample at each refinement step

K_alphal 00 number of clusters at each refinement step

alpha_int range for alpha to stop construction step

k_margin margin width; default value means that points are classified with more than
97,5%

lower.tail specify if one wants to estimate P[Isf(X)<failure] or P[Isf(X)>failure].

X Coordinates of alredy known points

y Value of the LSF on these points

failure Failure threshold

meta_model Provide here a kriging metamodel from km if wanted

kernel Specify the kernel to use for km

learn_each_train
Specify if kernel parameters are re-estimated at each train

limit_fun_MH Define an area of exclusion with a limit function

failure_MH Threshold for the limit. MH function
sampling_strategy
Either MH for Metropolis-Hastings of AR for accept-reject

seeds If some points are already known to be in the appropriate subdomain
seeds_eval Value of the metamodel on these points

burnin Burnin parameter for MH

compute.PPP to simulate a Poisson process at each iteration to estimate the conditional ex-

pectation and the SUR criteria based on the conditional variance: h (average
probability of misclassification at level failure) and I (integral of h over the
whole interval [failure, infty))
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plot Set to TRUE for a full plot, ie refresh at each iteration
limited_plot Set to TRUE for a final plot with final DOE, metamodel and LSF

add If plots are to be added to a current device

output_dir If plots are to be saved in jpeg in a given directory

verbose Either O for almost no output, or 1 for medium size or 2 for all outputs
Details

MetalS is an Important Sampling based probability estimator. It makes use of a kriging surogate
to approximate the optimal density function, replacing the indicatrice by its kriging pendant, the
probability of being in the failure domain. In this context, the normallizing constant of this quasi-
optimal PDF is called the ‘augmented failure probability’ and the modified probability ‘alpha’.

After a first uniform Design of Experiments, MetalS uses an alpha Leave-One-Out criterion com-
bined with a margin sampling strategy to refine a kriging-based metamodel. Samples are generated
according to the weighted margin probability with Metropolis-Hastings algorithm and some are
selected by clustering; the N_seeds are got from an accept-reject strategy on a standard population.

Once criterion is reached or maximum number of call done, the augmented failure probability is
estimated with a crude Monte-Carlo. Then, a new population is generated according to the quasi-
optimal instrumenal PDF; burnin and thinning are used here and alpha is evaluated. While the
coefficient of variation of alpha estimate is greater than a given threshold and some computation
spots still available (defined by Ncall_max) the estimate is refined with extra calculus.

The final probability is the product of p_epsilon and alpha, and final squared coefficient of variation
is the sum of p_epsilon and alpha one’s.

Value

An object of class 1ist containing the failure probability and some more outputs as described

below:

p The estimated failure probability.

cov The coefficient of variation of the Monte-Carlo probability estimate.

Ncall The total number of calls to the 1sf.

X The final learning database, ie. all points where 1sf has been calculated.

y The value of the 1sf on the learning database.

meta_fun The metamodel approximation of the 1sf. A call output is a list containing the
value and the standard deviation.

meta_model The final metamodel. An S4 object from DiceKriging. Note that the algorithm
enforces the problem to be the estimation of P[Isf(X)<failure] and so using ‘pre-
dict’ with this object will return inverse values if lower.tail==FALSE; in this
scope prefer using directly meta_fun which handle this possible issue.

points Points in the failure domain according to the metamodel.

h the sequence of the estimated relative SUR criteria.

I the sequence of the estimated integrated SUR criteria.
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Note

Problem is supposed to be defined in the standard space. If not, use UtoX to do so. Furthermore,
each time a set of vector is defined as a matrix, ‘nrow’ = dimension and ‘ncol’ = number of vector
to be consistent with as.matrix transformation of a vector.

Algorithm calls 1sf(X) (where X is a matrix as defined previously) and expects a vector in return.
This allows the user to optimise the computation of a batch of points, either by vectorial compu-
tation, or by the use of external codes (optimised C or C++ codes for example) and/or parallel
computation; see examples in MonteCarlo.

Author(s)

Clement WALTER <clementwalter@icloud.com>

References

e V. Dubourg:
Meta-modeles adaptatifs pour I’analyse de fiabilite et I’optimisation sous containte fiabiliste
PhD Thesis, Universite Blaise Pascal - Clermont 11,2011

* V. Dubourg, B. Sudret, F. Deheeger:
Metamodel-based importance sampling for structural reliability analysis Original Research
Article
Probabilistic Engineering Mechanics, Volume 33, July 2013, Pages 47-57

* V. Dubourg, B. Sudret:
Metamodel-based importance sampling for reliability sensitivity analysis.
Accepted for publication in Structural Safety, special issue in the honor of Prof. Wilson
Tang.(2013)

e V. Dubourg, B. Sudret and J.-M. Bourinet:
Reliability-based design optimization using kriging surrogates and subset simulation.
Struct. Multidisc. Optim.(2011)

See Also

SubsetSimulation MonteCarlo km (in package DiceKriging)

Examples

kiureghian = function(x, b=5, kappa=0.5, e=0.1) {
X = as.matrix(x)

b - x[2,] - kappa*(x[1,]-e)*2

3

## Not run:
res = MetaIS(dimension=2,1sf=kiureghian,plot=TRUE)
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#Compare with crude Monte-Carlo reference value
N = 500000

dimension = 2

U = matrix(rnorm(dimensionxN),dimension,N)

G = kiureghian(U)

P = mean(G<0)

cov = sqrt((1-P)/(N*xP))

## End(Not run)

#See impact of kernel choice with Waarts function :
waarts = function(u) {
u = as.matrix(u)
b1 = 3+(ul1,]-ul2,1)*2/10 - sign(ul1,] + ul2,1)*x(ul1,]+ul2,]1)/sqart(2)
b2 = sign(ul2,]-ul1,1)*(ul1,]1-ul2,1)+7/sqrt(2)
val = apply(cbind(b1, b2), 1, min)

3
## Not run:
res = list()

res$matern5_2 = MetalIS(2,waarts,plot=TRUE)

res$matern3_2 = MetalS(2,waarts,kernel="matern3_2",plot=TRUE)
res$gaussian = MetalS(2,waarts,kernel="gauss",plot=TRUE)
res$exp = MetalS(2,waarts,kernel="exp"”,plot=TRUE)

#Compare with crude Monte-Carlo reference value
N = 500000

dimension = 2

U = matrix(rnorm(dimension*N),dimension,N)

G = waarts(U)

P = mean(G<0)

cov = sqrt((1-P)/(NxP))

## End(Not run)

MetropolisHastings The modified Metropolis-Hastings algorithm

Description

The function implements the specific modified Metropolis-Hastings algorithm as described first by
Au and Beck and including another scaling parameter for an extended search in initial steps of the
SMART algorithm.

Usage

MetropolisHastings(
X0,
eval_x0 = -1,
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chain_length,

MetropolisHastings

modified = TRUE,

sigma = 0.3,

proposal = "Uniform",

lambda = 1,

limit_fun = function(x) { -1 3,

burnin = 20,
thinning = 4

Arguments

X0
eval_x0

chain_length
modified
sigma

proposal

lambda
limit_fun
burnin

thinning

Details

the starting point of the Markov chain
the value of the limit-state function on x@

the length of the Markov chain. At the end the chain will be chain_length + 1
long

a boolean to use either the original Metropolis-Hastings transition kernel or the
coordinate-wise one

a radius parameter for the Gaussian or Uniform proposal

either "Uniform" for a Uniform random variable in an interval [-sigma, sigma]
or "Gaussian" for a centred Gaussian random variable with standard deviation
sigma

the coefficient to increase the likelihood ratio
the limite-state function delimiting the domain to sample in
a burnin parameter, ie a number of initial discards samples

a thinning parameter, ie that one sample over thinning samples is kept along
the chain

The modified Metropolis-Hastings algorithm is supposed to be used in the Gaussian standard space.
Instead of using a proposed point for the multidimensional Gaussian random variable, it applies a

Metropolis step to

each coordinate. Then it generates the multivariate candidate by checking if it

lies in the right domain.

This version proposed by Bourinet et al. includes an scaling parameter lambda. This parameter
is multiplied with the likelihood ratio in order to increase the chance of accepting the candidate.
While it biases the output distribution of the Markov chain, the authors of SMART suggest its use
(lambda > 1) for the exploration phase. Note such a value disable to possiblity to use the output
population for Monte Carlo estimation.

Value

A list containing the following entries:

points

eval

the generated Markov chain

the value of the limit-state function on the generated samples
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acceptation the acceptation rate
Ncall the total number of call to the limit-state function
samples all the generated samples

eval_samples the evaluation of the limit-state function on the samples samples

modelLSVM Estimation of the parameters of the LSVM

Description

Produce a matrix containing the parameters of a set of hyperplanes separating the two classes of
data

Usage

modelLSVM(X, Y, convexity)

Arguments
X a matrix containing the data sets
Y a vector containing -1 or +1 that reprensents the class of each elements of X.
convexity Either -1 if the set of data associated to the label "-1" is convex or +1 otherwise.
Details

modelLSVM evaluate the classifier on a set of points.

Value
An object of class matrix containing the parameters of a set of hyperplanes

res A matrix where each lines contains the parameters of a hyperplane.

Author(s)

Vincent Moutoussamy

References

* R.T. Rockafellar:
Convex analysis
Princeton university press, 2015.

* N. Bousquet, T. Klein and V. Moutoussamy :
Approximation of limit state surfaces in monotonic Monte Carlo settings
Submitted .
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See Also
LSVM

Examples

# A limit state function
f <= function(x){ sqrt(sum(x*2)) - sqrt(2)/2 }

Creation of the data sets

<- 200

<- matrix(runif(2*n), nrow = n)

<- apply(X, MARGIN = 1, function(w){sign(f(w))3})

< >x 5 %=

#The convexity is known
## Not run:
model.A <- modelLSVM(X, Y, convexity = -1)

## End(Not run)

ModifCorrMatrix Modification of a correlation matrix to use in UtoX

Description

ModifCorrMatrix modifies a correlation matrix originally defined using SPEARMAN correlation
coefficients to the correlation matrix to be used in the NATAF transformation performed in UtoX.

Usage
ModifCorrMatrix(Rs)

Arguments

Rs Original correlation matrix defined using SPEARMAN correlation coefficient :

Rs = [pfj ]

Value

RO Modified correlation matrix
Note

The NATAF distribution is reviewed from the (normal) copula viewpoint as a particular and con-
venient means to describe a joint probabilistic model assuming that the normal copula fits to the
description of the input X. The normal copula is defined by a symmetric positive definite matrix RO.
Even though the off-diagonal terms in this matrix are comprised in ]-1; 1[ and its diagonal terms are
equal to 1, it shall not be confused with the more usual correlation matrix. Lebrun and Dutfoy point
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out that the SPEARMAN (or rank) correlation coefficient is better suited to parametrize a copula
because it leads to a simpler closed-form expression for p;;.

Author(s)
Gilles DEFAUX, <gilles.defaux@cea.fr>

References

* M. Lemaire, A. Chateauneuf and J. Mitteau. Structural reliability, Wiley Online Library, 2009

e Lebrun, R. and A. Dutfoy. A generalization of the Nataf transformation to distributions with
elliptical copula. Prob. Eng. Mech., 24(2), 172-178.

* V. Dubourg, Meta-modeles adaptatifs pour 1’analyse de fiabilite et I’optimisation sous con-
tainte fiabiliste, PhD Thesis, Universite Blaise Pascal - Clermont 11,2011

See Also

UtoX

Examples

Dim <- 2
input.Rho <- matrix( c(1.9, 0.5,

0.5, 1.0),nrow=Dim)
input.RQ <- ModifCorrMatrix(input.Rho)
print(input.RQ)

MonotonicQuantileEstimation
Quantile estimation under monotonicity constraints

Description

Estimate a quantile with the constraints that the function is monotone

Usage

MonotonicQuantileEstimation(f,
inputDimension,
inputDistribution,
dir.monot,
N.calls,
p,
method,
X.input
Y.input

NULL,
NULL)
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Arguments

f a failure fonction

inputDimension dimension of the inputs

inputDistribution
a list of length ‘inputDimension’ which contains the name of the input distribu-
tion and their parameters. For the input "i", inputDistribution[[i]] = list("name_law" ,c(parameters1,...,
parametersN))

dir.monot vector of size inputDimension which represents the monotonicity of the failure
function. dir.monot[i] = -1 (resp. 1) if the failure function f is decreasing (resp.
increasing) according with direction i.

N.calls Number of calls to f allowed

method there are four methods available. "MonteCarloWB" provides the empirical quan-
tile estimator, "MonteCarloWB" provides the empirical quantile estimator as
well as two bounds for the searched quantile, "Bounds" provides two bounds for
a quantile from a set of points and "MonteCarloIS" provides an estimate of a
quantile based on a sequential framework of simulation.

p the probability associated to the quantile
X.input a set of points
Y.input value of f on X.input
Details
MonotonicQuantileEstimation provides many methods to estimate a quantile under monotonicity
constraints.
Value

An object of class 1ist containing the quantile as well as:

gm A lower bound of the quantile.
gM A upperer bound of the quantile.
g.hat An estimate of the quantile.
Um A lower bounds of the probability obtained from the desing of experiments.
UM An upper bounds of the probability obtained from the desing of experiments.
XX Design of experiments
YY Values of on XX
Note

Inputs X.input and Y.input are useful only for method = "Bounds"

Author(s)

Vincent Moutoussamy
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References

Bousquet, N. (2012) Accelerated monte carlo estimation of exceedance probabilities under mono-
tonicity constraints. Annales de la Faculte des Sciences de Toulouse. XXI(3), 557-592.

Examples

## Not run:
inputDistribution <- list()
inputDistribution[[1]] <- list("norm”,c(4,1))
inputDistribution[[2]] <- list("norm”,c(0,1))

inputDimension <- length(inputDistribution)
dir.monot <- c(1, -1)
N.calls <- 80
f <= function(x){

return(x[1] - x[21)
}
probability <- 1e-2
trueQuantile <- gnorm(probability,

inputDistribution[[1]11[[2]1[1] - inputDistribution[[2]][[2]][1],
sqrt(inputDistribution[[1]11[[2]1[2] + inputDistribution[[1]1[[2]1[21))

resQuantile <- MonotonicQuantileEstimation(f, inputDimension, inputDistribution,
dir.monot, N.calls, p = probability, method = "MonteCarloIS")

quantileEstimate <- resQuantile[[1]][N.calls, 3]

## End(Not run)

MonteCarlo Crude Monte Carlo method

Description

Estimate a failure probability using a crude Monte Carlo method.

Usage

MonteCarlo(
dimension,
1sf,
N_max = 5e+05,
N_batch = foreach::getDoParWorkers(),
q =0,
lower.tail = TRUE,
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precision = 0.05,
plot = FALSE,
output_dir = NULL,
save.X = TRUE,

verbose
)
Arguments
dimension the dimension of the input space.
1sf the function defining safety/failure domain.
N_max maximum number of calls to the 1sf.
N_batch number of points evaluated at each iteration.
q the quantile.
lower.tail as for pxxxx functions, TRUE for estimating P(Isf(X) < q), FALSE for P(Isf(X)
>q).
precision a targeted maximum value for the coefficient of variation.
plot to plot the contour of the 1sf as well as the generated samples.
output_dir to save a copy of the plotin a pdf. This name will be pasted with "_Monte_Carlo_brut.pdf".
save.X to save all the samples generated as a matrix. Can be set to FALSE to reduce
output size.
verbose to control the level of outputs in the console; either O or 1 or 2 for almost no
outputs to a high level output.
Details

This implementation of the crude Monte Carlo method works with evaluating batchs of points
sequentialy until a given precision is reached on the final estimator

Value

An object of class 1ist containing the failure probability and some more outputs as described

below:

p the estimated probabilty.

ecdf the empiracal cdf got with the generated samples.

cov the coefficient of variation of the Monte Carlo estimator.

Ncall the total numnber of calls to the 1sf, ie the total number of generated samples.
X the generated samples.

Y the value 1sf(X).
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Note

Problem is supposed to be defined in the standard space. If not, use UtoX to do so. Furthermore,
each time a set of vector is defined as a matrix, ‘nrow’ = dimension and ‘ncol’ = number of vector
to be consistent with as.matrix transformation of a vector.

Algorithm calls Isf(X) (where X is a matrix as defined previously) and expects a vector in return.
This allows the user to optimise the computation of a batch of points, either by vectorial compu-
tation, or by the use of external codes (optimised C or C++ codes for example) and/or parallel
computation.

Author(s)

Clement WALTER <clementwalter@icloud.com>

References

¢ R. Rubinstein and D. Kroese:
Simulation and the Monte Carlo method
Wiley (2008)

See Also

SubsetSimulation foreach

Examples

#First some considerations on the usage of the 1lsf.
#Limit state function defined by Kiureghian & Dakessian :
# Remember you have to consider the fact that the input will be a matrix ncol >= 1
1sf_wrong = function(x, b=5, kappa=0.5, e=0.1) {
b - x[2] - kappax(x[1]-e)*2 # work only with a vector of lenght 2
3
1sf_correct = function(x){
apply(x, 2, lsf_wrong)
3
1sf = function(x, b=5, kappa=0.5, e=0.1) {
X = as.matrix(x)
b - x[2,] - kappa*(x[1,]-e)*2 # vectorial computation, run fast

}

y = 1sf(X <- matrix(rnorm(20), 2, 10))
#Compare running time
## Not run:
require(microbenchmark)
X = matrix(rnorm(2e5), 2)
microbenchmark(1sf(X), lsf_correct(X))

## End(Not run)

#Example of parallel computation
require(doParallel)
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1sf_par = function(x){
foreach(x=iter(X, by='col'), .combine = 'c') %dopar% lsf(x)

3
#Try Naive Monte Carlo on a given function with different failure level
## Not run:

res = list()

res[[1]] = MonteCarlo(2,1sf,q = 0,plot=TRUE)

res[[2]] = MonteCarlo(2,1sf,q = 1,plot=TRUE)
res[[3]] = MonteCarlo(2,1sf,q = -1,plot=TRUE)

## End(Not run)

#Try Naive Monte Carlo on a given function and change number of points.

## Not run:
res = list()
res[[1]] = MonteCarlo(2,1sf,N_max = 10000)
res[[2]] = MonteCarlo(2,1sf,N_max = 100000)

res[[3]] = MonteCarlo(2,1sf,N_max = 500000)

## End(Not run)

MP Moving Particles

Description

This function runs the Moving Particles algorithm for estimating extreme probability and quantile.

Usage

MP(
dimension,
1sf,
N = 100,
N.batch = foreach: :getDoParWorkers(),
P,
q,
lower.tail = TRUE,
Niter_1fold,
alpha = 0.05,
compute_confidence = FALSE,
verbose = 0,
chi2 = FALSE,
breaks = N.batch/5,



MP 39

Arguments

dimension the dimension of the input space.

1sf the function defining the RV of interest Y = Isf(X).

N the total number of particles,

N.batch the number of parallel batches for the algorithm. Each batch will then have
N/N.batch particles. Typically this could be detectCores() or some other
machine-derived parameters. Note that N/N.batch has to be an integer.

p a given probability to estimate the corresponding quantile (as in gxxxx func-
tions).

q a given quantile to estimate the corresponding probability (as in pxxxx func-
tions).

lower.tail as for pxxxx functions, TRUE for estimating P(Isf(X) < q), FALSE for P(Isf(X)
>q).

Niter_1fold a function = fun(N) giving the deterministic number of iterations for the first
pass.

alpha when using default Niter_1fold function, this is the risk not to have simulated

enough samples to produce a quantile estimator.

compute_confidence
if TRUE, the algorithm runs a little bit longer to produces a 95% interval on the
quantile estimator.

verbose to control level of print (either 0, or 1, or 2).
chi2 for a chi2 test on the number of events.
breaks for the final histogram is chi2 == TRUE.

further arguments past to IRW.

Details

MP is a wrap up of IRW for probability and quantile estimation. By construction, the several calls
to IRW are parallel (foreach) and so is the algorithm. Especially, with N.batch=1, this is the Last
Particle Algorithm, which is a specific version of SubsetSimulation with p_@ = 1-1/N. However,
note that this algorithm not only gives a quantile or a probability estimate but also an estimate of
the whole cdf until the given threshold q.

The probability estimator only requires to generate several random walks as it is the estimation
of the parameter of a Poisson random variable. The quantile estimator is a little bit more compli-
cated and requires a 2-passes algorithm. It is thus not exactly fully parallel as cluster/cores have
to communicate after the first pass. During the first pass, particles are moved a given number of
times, during the second pass particles are moved until the farthest event reach during the first pass.
Hence, the random process is completely simulated until this given state.

For an easy user experiment, all the parameters are defined by default with the optimised values as
described in the reference paper (see References below) and a typical use will only specify N and
N.batch.
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Value

MP

An object of class 1ist containing the outputs described below:

cv
ecdf

L_max

times
Ncall
X

y
moves
p_int
cov
g_int
chi2

Note

the estimated probability or the reference for the quantile estimate.
the estimated quantile or the reference for the probability estimate.
the coefficient of variation of the probability estimator.

the empirical cdf.

the states of the random walk.

the farthest state reached by the random process. Validity range for the ecdf is
then (-Inf, L_max] or [L_max, Inf).

the times of the random process.

the total number of calls to the 1sf.

the N particles in their final state.

the value of the 1sf (X).

a vector containing the number of moves for each batch.
a 95% confidence intervalle on the probability estimate.
the coefficient of variation of the estimator

a 95% confidence intervall on the quantile estimate.

the output of the chisq.test function.

The alpha parameter is set to 0.05 by default. Indeed it should not be set too small as it is defined
approximating the Poisson distribution with the Gaussian one. However if no estimate is produce
then the algorithm can be restarted for the few missing events. In any cases, setting Niter_1fold =
-N/N.batch*log(p) gives 100% chances to produces a quantile estimator.

Author(s)

Clement WALTER <clementwalter@icloud.com>

References

* A. Guyader, N. Hengartner and E. Matzner-Lober:
Simulation and estimation of extreme quantiles and extreme probabilities
Applied Mathematics and Optimization, 64(2), 171-196.

e C. Walter:

Moving Particles: a parallel optimal Multilevel Splitting method with application in quantiles
estimation and meta-model based algorithms
Structural Safety, 55, 10-25.

¢ E. Simonnet:

Combinatorial analysis of the adaptive last particle method
Statistics and Computing, 1-20.
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See Also

SubsetSimulation MonteCarlo IRW

Examples

## Not run:

# Estimate some probability and quantile with the parabolic 1sf

p.est <- MP(2, kiureghian, N = 100, q = @) # estimate P(lsf(X) < @)

p.est <- MP(2, kiureghian, N =100, q = 7.8, lower.tail = FALSE) # estimate P(1sf(X) > 7.8)

g.est <- MP(2, kiureghian, N = 100, p = 1e-3) # estimate q such that P(lsf(X) < q) = 1e-3
.est <- MP(2, kiureghian, N = 100, p = 1e-3, lower.tail = FALSE) # estimate q such
# that P(1sf(X) > q) = le-3

o]

# plot the empirical cdf
plot(xplot <- seq(-3, p.est$L_max, 1 = 100), sapply(xplot, p.est$ecdf_MP))

# check validity range
p.est$ecdf_MP(p.est$L_max - 1)
# this example will fail because the quantile is greater than the limit
tryCatch({
p.est$ecdf_MP(p.est$L_max + 0.1)3},
error = function(cond) message(cond))

# Run in parallel

library(doParallel)

registerDoParallel()

p.est <- MP(2, kiureghian, N = 100, q = @, N.batch = getDoParWorkers())

## End(Not run)

ok Class of Ordinary Kriging

Description
An implementation of Ordinary Kriging based upon a km-class object that should be faster than
usual predict method.

Usage
ok(model, beta = NULL)

Arguments

model a kriging model object from DiceKriging: :km-class
beta the trend of the model
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Details

The Ordinary Kriging is a special case of kriging where the trend is supposed to be and unknown
constant. Consequently some linear algebra operations can be reduced by knowning that the vector
of parameter beta is indeed a real.

The ok class defines three functions: xi the kriging predictor, updateSd and updateSdfast two
methods for updating the kriging variance when some poitns are virtually added to the model. These
two last functions differ in their implementation: the first one allows for the user to specify which
are the predicted points and which are the added points. The second one outputs a matrix where the
kriging variances of all the points is updated when each one is iteratively added the the Design of
Experiments.

The faster between looping updateSd and using updateSdfast is indeed problem dependent (de-
pending on parallel computer, size of the data, etc.) and should be benchmark by the user.

Value

An object of S3 class ok’ containing

Kinv the inverse of the covariance matrix of the data

beta the estimated coefficient of the trend

y_centred the data centred according to the estimated trend

sigma_beta the standard deviation of the estimation of beta

xi the kriging predictor

updateSd a function to calculate the updated kriging variance when Xnew points are added

to the Design of Experiments

updateSdfast  a function to calculate the update kriging variance when the SUR criterion is
minimised over a population which is also the one used to estimate it.

Author(s)

Clement WALTER <clementwalter@icloud.com>

Examples

# Generate a dataset
X <- data.frame(x1 = rnorm(10), x2 = rnorm(10))
y <- cos(sgrt(rowSums(X*2)))

# Learn a model
krig <- DiceKriging::km(design=X, response=y)

# Create Ordinary Kriging object
0K <- ok(krig)

# Microbenchmark

# create a dataset

X = data.frame(x1 = rnorm(100), x2 = rnorm(100))

microbenchmark: :microbenchmark (OK$xi(t(X)), predict(krig, X, type="UK"))
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# Check identical results

X <= rnorm(2)

OK$xi(X)[c('mean', 'sd')]

predict(krig, data.frame(x1=X[1], x2=X[2]), type="UK")[c('mean', 'sd')]

oscillator_d6 A limit-state-function defined with a non-linear oscillator in dimension
6.

Description
The limit-state function is defined in the standard space and isoprobabilistic transformation is used
internally.

Usage

oscillator_d6

Format

The function can handle a vector or a matrix with column vectors.

References

Echard, B and Gayton, N and Lemaire, M and Relun, N:

A combined Importance Sampling and Kriging reliability method for small failure probabilities with
time-demanding numerical models

Reliability Engineering and System Safety 111 232-240, 2013.

plotLSVM plot of LSVM

Description

Make a plot of the data and the LSVM classifier

Usage

plotLSVM(X,
Y,
A.model.lsvm,
hyperplanes = FALSE,
limit.state.estimate = TRUE,
convexity)
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Arguments
X a matrix containing the data sets
Y a vector containing -1 or +1 that reprensents the class of each elements of X.

A.model.lsvm  a matrix containing the parameters of all hyperplanes.

hyperplanes A boolean. If TRUE, plot the hyperplanes obtained.
limit.state.estimate
A boolean. If TRUE, plot the estimate of the limit state.

convexity Either -1 if the set of data associated to the label "-1" is convex or +1 otherwise.

Details
plotLSVM makes a plot of the data as well as the estimate limit state and the hyperplanes involved
in this construction.

Note

This function is useful only in dimension 2.

Author(s)

Vincent Moutoussamy

References

* R.T. Rockafellar:
Convex analysis
Princeton university press, 2015.

* N. Bousquet, T. Klein and V. Moutoussamy :
Approximation of limit state surfaces in monotonic Monte Carlo settings
Submitted .

See Also
LSVM modellLSVM

Examples

# A limit state function
f <= function(x){ sqrt(sum(x*2)) - sqrt(2)/2 }

# Creation of the data sets
n <- 200

X <= matrix(runif(2*n), nrow = n)
Y <- apply(X, MARGIN = 1, function(w){sign(f(w))3})
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## Not run:
model.A <- modelLSVM(X,Y, convexity = -1)
plotLSVM(X, Y, model.A, hyperplanes = FALSE, limit.state.estimate = TRUE, convexity = -1)

## End(Not run)

precomputeUpdateData  precomputeUpdateData

Description

precomputeUpdateData

Usage

precomputeUpdateData(model, integration.points)

Arguments

model a object from km
integration.points
the points onto which the updated variance will be computed

Value

A list containing the following elements

Kinv.c.olddata kriging weights for the integrations.points over krig@X

Kinv.F The matrix product of the inverse covariance and F the matrix of the trend func-
tions at model @X

first.member

quantileWilks Computing quantiles with the Wilks formula

Description

From the Wilks formula, compute a quantile (or a tolerance interval) with a given confidence level
from a i.i.d. sample, or compute the minimal sample size to estimate a quantile (or a tolerance
interval) with a given confidence level.

Usage

quantileWilks(alpha=0.95,beta=0.95,data=NULL,bilateral=FALSE)
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Arguments

alpha
beta

data

bilateral

Value

quantileWilks

level of the unilateral or bilateral quantile (default = 0.95)
level of the confidence interval on quantile value(s) (default = 0.95)

the data sample (vector format) to compute the quantile(s); if data=NULL (by
default), the function returns the minimal sample size to compute the required
quantile

TRUE for bilateral quantile (default = unilateral = FALSE)

4 output values if ’data’ is specified; 1 output value (nmin) if "data’ is not specified

lower

upper

nmin

ind

Author(s)

lower bound of the bilateral tolerance interval; if bilateral=FALSE, no value

upper bound of the tolerance interval (bilateral case) or quantile value (unilateral
case)

minimal size of the required i.i.d. sample for given alpha and beta: - bilateral
case: tolerance interval will be composed with the min and max of the sample;
- unilateral case: the quantile will correspond to max of the sample.

the index (unilateral case) or indices (bilateral case) of the quantiles in the or-
dered sample (increasing order)

Claire Cannamela and Bertrand Iooss

References

H.A. David and H.N. Nagaraja. Order statistics, Wiley, 2003.

W.T. Nutt and G.B. Wallis. Evaluation of nuclear safety from the outputs of computer codes in the
presence of uncertainties. Reliability Engineering and System Safety, 83:57-77, 2004.

S.S. Wilks. Determination of Sample Sizes for Setting Tolerance Limits. Annals Mathematical
Statistics, 12:91-96, 1941.

Examples

N <- quantileWilks(alpha=0.95,beta=0.95)

print(N)
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rackwitz A limit-state-function defined by Rackwitz

Description

The function is defined in the standard space and internal normal-lognormal transformation is done.
Its definition with iid lognormal random variables is:

d
d+ aoVd — Z Z;
i=1
Default values are: a = 1, mean=1 and o = 0.2.

Usage

rackwitz

Format

The function can handle a vector or a matrix with column vectors.

References

Rackwitz, R:

Reliability analysis: a review and some perspectives
Structural Safety, 23, 4, 365-395, 2001.

S2MART Subset by Support vector Margin Algorithm for Reliability esTimation

Description

S2MART introduces a metamodeling step at each subset simulation threshold, making number of
necessary samples lower and the probability estimation better according to subset simulation by
itself.

Usage

S2MART(
dimension,
1sf,
Nn = 100,
alpha_quantile = 0.1,
failure = 0,
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lower.tail = TRUE,

plot = FALSE,
output_dir = NULL,
verbose = 0

)
Arguments
dimension the dimension of the input space
1sf the function defining the failure domain. Failure is 1sf(X) < failure
Nn number of samples to evaluate the quantiles in the subset step

alpha_qguantile cutoff probability for the subsets

failure the failure threshold

lower.tail as for pxxxx functions, TRUE for estimating P(Isf(X) < failure), FALSE for
P(sf(X) > failure)
All others parameters of the metamodel based algorithm

plot to produce a plot of the failure and safety domain. Note that this requires a lot
of calls to the 1sf and is thus only for training purpose

output_dir to save the plot into the given directory. This will be pasted with "_S2MART.pdf"

verbose either O for almost no output, 1 for medium size output and 2 for all outputs

Details

S2MART algorithm is based on the idea that subset simulations conditional probabilities are es-
timated with a relatively poor precision as it requires calls to the expensive-to-evaluate limit state
function and does not take benefit from its numerous calls to the limit state function in the Metropolis-
Hastings algorithm. In this scope, the key concept is to reduce the subset simulation population to its
minimum and use it only to estimate crudely the next quantile. Then the use of a metamodel-based
algorithm lets refine the border and calculate an accurate estimation of the conditional probability
by the mean of a crude Monte-Carlo.

In this scope, a compromise has to be found between the two sources of calls to the limit state
function as total number of calls = (Nn + number of calls to refine the metamodel) x (number of
subsets) :

* Nn calls to find the next threshold value : the bigger Nn, the more accurate the ‘decreasing
speed’ specified by the alpha_quantile value and so the smaller the number of subsets

e total number of calls to refine the metamodel at each threshold

Value

An object of class 1ist containing the failure probability and some more outputs as described
below:

p The estimated failure probability.

cov The coefficient of variation of the Monte-Carlo probability estimate.
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Ncall The total number of calls to the 1sf.
X The final learning database, ie. all points where 1sf has been calculated.
y The value of the 1sf on the learning database.
meta_model The final metamodel. An object from e1071.
Note

Problem is supposed to be defined in the standard space. If not, use UtoX to do so. Furthermore,
each time a set of vector is defined as a matrix, ‘nrow’ = dimension and ‘ncol’ = number of vector
to be consistent with as.matrix transformation of a vector.

Algorithm calls Isf(X) (where X is a matrix as defined previously) and expects a vector in return.
This allows the user to optimise the computation of a batch of points, either by vectorial compu-
tation, or by the use of external codes (optimised C or C++ codes for example) and/or parallel
computation; see examples in MonteCarlo.

Author(s)

Clement WALTER <clementwalter@icloud.com>

References

* J.-M. Bourinet, F. Deheeger, M. Lemaire:
Assessing small failure probabilities by combined Subset Simulation and Support Vector Ma-
chines
Structural Safety (2011)

* F Deheeger:
Couplage m?cano-fiabiliste : 2SMART - m?thodologie d’apprentissage stochastique en fia-
bilit?
PhD. Thesis, Universit? Blaise Pascal - Clermont II, 2008

e S.-K. Au, J. L. Beck:
Estimation of small failure probabilities in high dimensions by Subset Simulation
Probabilistic Engineering Mechanics (2001)

* A. Der Kiureghian, T. Dakessian:
Multiple design points in first and second-order reliability
Structural Safety, vol.20 (1998)

* P.-H. Waarts:
Structural reliability using finite element methods: an appraisal of DARS:
Directional Adaptive Response Surface Sampling
PhD. Thesis, Technical University of Delft, The Netherlands, 2000

See Also

SMART SubsetSimulation MonteCarlo km (in package DiceKriging) svm (in package e1071)
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Examples

## Not run:
res = S2MART(dimension = 2,
1sf = kiureghian,
N1 = 1000, N2 = 5000, N3 = 10000,
plot = TRUE)

#Compare with crude Monte-Carlo reference value
reference = MonteCarlo(2, kiureghian, N_max = 500000)

## End(Not run)

#See impact of metamodel-based subset simulation with Waarts function :
## Not run:
res = list()
# SMART stands for the pure metamodel based algorithm targeting directly the
# failure domain. This is not recommended by its authors which for this purpose
# designed S2MART : Subset-SMART
res$SMART = mistral:::SMART(dimension = 2, 1sf = waarts, plot=TRUE)
res$S2MART = S2MART(dimension = 2,
1sf = waarts,
N1 = 1000, N2 = 5000, N3 = 10000,
plot=TRUE)
res$SS = SubsetSimulation(dimension = 2, waarts, n_init_samples = 10000)
res$MC = MonteCarlo(2, waarts, N_max = 500000)

## End(Not run)

SMART Support-vector Margin Algoritm for Reliability esTimation

Description

Calculate a failure probability with SMART method. This should not be used by itself but only
through S2ZMART.

Usage

SMART (
dimension,
1sf,

N1 = 10000,
N2 50000,
N3 = 2e+05,
Nu = 50,
lambda1
lambda2
lambda3

1
- w
ol
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tune_cost = c(1, 10, 100, 1000),

tune_gamma = c(0.5, 0.2, 0.1, 0.05, 0.02, 0.01),
clusterInMargin = TRUE,

alpha_margin = 1,

k1 = round(6 * (dimension/2)"(0.2)),
k2 = round(12 * (dimension/2)"(0.2)),
k3 = k2 + 16,

X = NULL,

y = NULL,

failure = 0,

limit_fun_MH = NULL,
sampling_strategy = "MH",
seeds = NULL,

seeds_eval = NULL,

burnin = 20,

thinning = 4,

plot = FALSE,

limited_plot = FALSE,

add = FALSE,

output_dir = NULL,

z_MH = NULL,

z_1sf = NULL,

verbose = @
)

Arguments

dimension the dimension of the input space
1sf the limit-state function
N1 Number of samples for the (L)ocalisation step
N2 Number of samples for the (S)tabilisation step
N3 Number of samples for the (C)onvergence step
Nu Size of the first Design of Experiments
lambda1l Relaxing parameter for MH algorithm at step L
lambda2 Relaxing parameter for MH algorithm at step S
lambda3 Relaxing parameter for MH algorithm at step C
tune_cost Input for tuning cost paramter of the SVM
tune_gamma Input for tuning gamma parameter of the SVM
clusterInMargin

Enforce selected clusterised points to be in margin

alpha_margin a real value defining the margin. While 1 is the ‘real’ margin for a SVM, one
can decide here to stretch it a bit.

k1 Rank of the first iteration of step S
k2 Rank of the first iteration of step C
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k3

X

y

failure
limit_fun_MH

SMART

Rank of the last iteration of step C
Coordinates of alredy known points
Value of the LSF on these points
Failure threshold

Define an area of exclusion with a limit function

sampling_strategy

seeds
seeds_eval
burnin
thinning
plot
limited_plot
add
output_dir
z_MH

z_lsf

verbose

Details

Either MH for Metropolis-Hastings of AR for accept-reject

If some points are already known to be in the subdomain defined by 1imit_fun_MH
Value of the metamodel on these points

Burnin parameter for MH

Thinning parameter for MH

Set to TRUE for a full plot, ie. refresh at each iteration

Set to TRUE for a final plot with final DOE, metamodel and LSF

If plots are to be added to the current device

If plots are to be saved in jpeg in a given directory

For plots, if the limit_fun_MH has already been evaluated on the grid
For plots, if LSF has already been evaluated on the grid

Either O for almost no output, 1 for medium size output and 2 for all outputs

SMART is a reliability method proposed by J.-M. Bourinet et al. It makes uses of a SVM-based
metamodel to approximate the limit state function and calculates the failure probability with a crude
Monte-Carlo method using the metamodel-based limit state function. As SVM is a classification
method, it makes use of limit state function values to create two classes : greater and lower than the
failure threshold. Then the border is taken as a surogate of the limit state function.

Concerning the refinement strategy, it distinguishes 3 stages, known as Localisation, Stalibilsation
and Convergence stages. The first one is proposed to reduce the margin as much as possible, the sec-
ond one focuses on switching points while the last one works on the final Monte-Carlo population
and is designed to insure a strong margin; see F. Deheeger PhD thesis for more information.

Value

An object of class 1ist containing the failure probability and some more outputs as described

below:

proba
cov
Ncall
X

y
meta_fun

The estimated failure probability.

The coefficient of variation of the Monte-Carlo probability estimate.
The total number of calls to the 1imit_state_function.

The final learning database, ie. all points where 1sf has been calculated.
The value of the 1imit_state_function on the learning database.

The metamodel approximation of the 1imit_state_function. A call output is
a list containing the value and the standard deviation.
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meta_model The final metamodel.

points Points in the failure domain according to the metamodel.

meta_eval Evaluation of the metamodel on these points.

z_meta If plot==TRUE, the evaluation of the metamodel on the plot grid.
Note

Problem is supposed to be defined in the standard space. If not, use UtoX to do so.

Furthermore, each time a set of vector is defined as a matrix, ‘nrow’ = dimension and ‘ncol’ =
number of vector.

Author(s)

Clement WALTER <clementwalter@icloud.com>

References

* J.-M. Bourinet, F. Deheeger, M. Lemaire:
Assessing small failure probabilities by combined Subset Simulation and Support Vector Ma-
chines
Structural Safety (2011)

* F. Deheeger:
Couplage mecano-fiabiliste : 2SMART - methodologie d’apprentissage stochastique en fia-
bilite
PhD. Thesis, Universite Blaise Pascal - Clermont II, 2008

See Also

SubsetSimulation MonteCarlo svm (in package e1071) S2MART

SubsetSimulation Subset Simulation Monte Carlo

Description

Estimate a probability of failure with the Subset Simulation algorithm (also known as Multilevel
Splitting or Sequential Monte Carlo for rare events).

Usage

SubsetSimulation(
dimension,
1sf,
p_0 = 0.1,
N = 10000,
q=20,



54

lower.tail

K,

thinning =

save.all

SubsetSimulation

= TRUE,

20,
FALSE,
plot = FALSE,

plot.level = 5,
plot.1sf = TRUE,
output_dir = NULL,

plot.lab = c("x",

verbose

Arguments

dimension
1sf

p_0

N

q
lower.tail

thinning

save.all

plot

plot.level

plot.1lsf

output_dir
plot.lab

verbose

Details

"y”>,

the dimension of the input space.
the function defining failure/safety domain.
a cutoff probability for defining the subsets.

the number of samples per subset, ie the population size for the Monte Carlo
estimation of each conditional probability.

the quantile defining the failure domain.

as for pxxxx functions, TRUE for estimating P(Isf(X) < q), FALSE for P(Isf(X)
>q)

a transition Kernel for Markov chain drawing in the regeneration step. K(X)
should propose a matrix of candidate sample (same dimension as X) on which
1sf will be then evaluated and transition accepted of rejected. Default kernel is
the one defined K(X) = (X + sigma*W)/sqrt(1 + sigma”2) with W ~ N(O, 1).

a thinning parameter for the the regeneration step.

if TRUE, all the samples generated during the algorithms are saved and return
at the end. Otherwise only the working population is kept at each iteration.

to plot the generated samples.

maximum number of expected levels for color consistency. If number of levels
exceeds this value, the color scale will change according to ggplot2 default
policy.

a boolean indicating if the 1sf should be added to the plot. This requires the
evaluation of the 1sf over a grid and consequently should be used only for il-
lustation purposes.

to save the plot into a pdf file. This variable will be paster with "_Subset_Simulation.pdf"

the x and y labels for the plot

Either O for almost no output, 1 for medium size output and 2 for all outputs

This algorithm uses the property of conditional probabilities on nested subsets to calculate a given
probability defined by a limit state function.
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It operates iteratively on ‘populations’ to estimate the quantile corresponding to a probability of
p_0. Then, it generates samples conditionnaly to this threshold, until found threshold be lower than
0.

Finally, the estimate is the product of the conditional probabilities.

Value

An object of class 1ist containing the failure probability and some more outputs as described

below:
p the estimated failure probability.
cv the estimated coefficient of variation of the estimate.
Ncall the total number of calls to the 1sf.
X the working population.
Y the value 1sf(X).
Xtot if save.1list==TRUE, all the Ncall samples generated by the algorithm.
Ytot the value 1sf(Xtot).
sigma.hist if default kernel is used, sigma is initialized with 0.3 and then further adaptively
updated to have an average acceptance rate of 0.3
Note

Problem is supposed to be defined in the standard space. If not, use UtoX to do so. Furthermore,
each time a set of vector is defined as a matrix, ‘nrow’ = dimension and ‘ncol’ = number of vector
to be consistent with as.matrix transformation of a vector.

Algorithm calls 1sf(X) (where X is a matrix as defined previously) and expects a vector in return.
This allows the user to optimise the computation of a batch of points, either by vectorial compu-
tation, or by the use of external codes (optimised C or C++ codes for example) and/or parallel
computation; see examples in MonteCarlo.

Author(s)

Clement WALTER <clementwalter@icloud.com>

References

e S.-K. Au, J. L. Beck:
Estimation of small failure probabilities in high dimensions by Subset Simulation
Probabilistic Engineering Mechanics (2001)

* A. Guyader, N. Hengartner and E. Matzner-Lober:
Simulation and estimation of extreme quantiles and extreme probabilities
Applied Mathematics and Optimization, 64(2), 171-196.

* F. Cerou, P. Del Moral, T. Furon and A. Guyader:
Sequential Monte Carlo for rare event estimation
Statistics and Computing, 22(3), 795-808.
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See Also

IRWMP MonteCarlo

Examples

#Try Subset Simulation Monte Carlo on a given function and change number of points.

## Not run:
res = list()
res[[1]] = SubsetSimulation(2,kiureghian,N=10000)
res[[2]] = SubsetSimulation(2,kiureghian,N=100000)
res[[3]] = SubsetSimulation(2,kiureghian,N=500000)

## End(Not run)

# Compare SubsetSimulation with MP

## Not run:

p <- res[[3]1%p # get a reference value for p

p_0 <- 0.1 # the default value recommended by Au and Beck
N_mp <- 100

# to get approxumately the same number of calls to the 1lsf
N_ss <- ceiling(N_mp*log(p)/log(p_0))

comp <- replicate(50, {

ss <- SubsetSimulation(2, kiureghian, N = N_ss)

mp <- MP(2, kiureghian, N = N_mp, q = 0)

comp <- c(ss$p, mp$p, ss$Ncall, mp$Ncall)

names(comp) = rep(c(”"SS", "MP"), 2)

comp

»

boxplot(t(comp[1:2,1)) # check accuracy

sd.comp <- apply(comp,1,sd)

print(sd.comp[1]/sd.comp[2]) # variance increase in SubsetSimulation compared to MP

colMeans(t(comp[3:4,]1)) # check similar number of calls

## End(Not run)

testConvexity Test the convexity of set of data

Description

Provides the

Usage

testConvexity(X,Y)
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Arguments

X a matrix containing the data sets

Y a vector containing -1 or +1 that reprensents the class of each elements of X.
Details

testConvexity test if one of the two data set is potentially convex.

Value
An object of class 1ist containing the number of the class which is convex and the parameters of a
set of hyperplanes separating the two classes

Author(s)

Vincent Moutoussamy

References

* R.T. Rockafellar:
Convex analysis
Princeton university press, 2015.

See Also
LSVM modelLSVM

Examples

ETS

A limit state function

f <= function(x){ sqgrt(sum(x*2)) - sqrt(2)/2 }

# Creation of the data sets

n <- 200

X <= matrix(runif(2*n), nrow = n)

Y <- apply(X, MARGIN = 1, function(w){sign(f(w))})
## Not run:

TEST.Convexity <- testConvexity(X, Y)
if(length(TEST.Convexity) == 2){
Convexity <- TEST.Convexity[[1]]
model.A  <- TEST.Convexity[[2]]
}
if (length(TEST.Convexity) == 1){
# The problem is not convex
Convexity <- @ #the problem is not convex

}

## End(Not run)
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twodof A limit-state-function defined with a two degrees of freedom damped
oscillator

Description

The limit-state function is defined in the standard space and isoprobabilistic transformation is used
internally.

Parameters mean_Fs and p can be specified and default are 27.5 and 3 respectively.

Usage

twodof

Format

The function can handle a vector or a matrix with column vectors.

References

Dubourg, V and Deheeger, F and Sudret, B:
Metamodel-based importance sampling for the simulation of rare events
arXiv preprint arXiv:1104.3476, 2011.

updatelLSVM Update LSVM classifier

Description

Update the existing classifier LSVM with a new set of data.

Usage

updateLSVM(X.new,
Y.new,
X,
Y,
A.model.lsvm,
convexity,
PLOTSVM = FALSE,
step.plot.LSWM = 1,
hyperplanes = FALSE,
limit.state.estimate = TRUE)
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Arguments

X.new

Y.new

X

Y
A.model.lsvm
convexity
PLOTSWVM
step.plot.LSVM
hyperplanes

59

a matrix containing a new data sets

a vector containing -1 or +1 that reprensents the class of each elements of X.new.
a matrix containing the data sets

a vector containing -1 or +1 that reprensents the class of each elements of X.

a matrix containing the parameters of all hyperplanes.

Either -1 if the set of data associated to the label "-1" is convex or +1 otherwise.
A boolean. If TRUE, plot the data.

A plot is made each step.plot.LSVM steps.

A boolean. If TRUE, plot the hyperplanes obtained.

limit.state.estimate

Details

A boolean. If TRUE, plot the estimate of the limit state.

updateLSVM allows to make an update of the classifier LSVM.

Value

An object of class matrix containing the parameters of a set of hyperplanes

Note

The argument PLOTSVM is useful only in dimension 2.

Author(s)

Vincent Moutoussamy

References

* R.T. Rockafellar:
Convex analysis
Princeton university press, 2015.

* N. Bousquet, T. Klein and V. Moutoussamy :
Approximation of limit state surfaces in monotonic Monte Carlo settings

Submitted .

See Also

LSVM modelLSVM
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Examples

# A limit state function
f <= function(x){ sqrt(sum(x*2)) - sqrt(2)/2 }

# Creation of the data sets

n <- 200
X <= matrix(runif(2*n), nrow = n)
Y <- apply(X, MARGIN = 1, function(w){sign(f(w))})

## Not run:
model.A <- modelLSVM(X,Y, convexity = -1)
M <- 20
X.new <- matrix(runif(2*M), nrow = M)
Y.new <- apply(X.new, MARGIN = 1, function(w){ sign(f(w))3})

X.new.S <- X.new[which(Y.new > 0), ]
Y.new.S <- Y.new[which(Y.new > 0)]
model.A.new <- updateLSVM(X.new.S, Y.new.S, X, VY,
model.A, convexity = -1, PLOTSVM = TRUE, step.plot.LSVM = 5)

## End(Not run)

updateSd UpdateSd

Description

Update kriging variance when adding new points to the DoE

Usage

updateSd(
X.new,
integration.points.oldsd,
model,
precalc.data,
integration.points

Arguments

X.new the d x N matrix containing the points added to the model for the update of the
kriging variance.
integration.points.oldsd

a vector containing the standard deviation of the points to be added to the meta-
model learning database.
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model the current kriging model (a km object).
precalc.data  precomputed data from Kriglnv::precomputeUpdateData.
integration.points

points where the updated sd is to be calculated.

Value

a vector containing the kriging sd at points integration.points

updateSd.old UpdateSd.old

Description

UpdateSd.old

Usage

updateSd.old(X.new, newdata.oldsd, model, precalc.data, integration.points)

Arguments
X.new the d x N matrix containing the points added to the model for the update of the
kriging variance.

newdata.oldsd a vector containing the standard deviation of the points to be added to the meta-
model learning database.

model the current kriging model (a km object).

precalc.data  precomputed data from Kriglnv::precomputeUpdateData.
integration.points
points where the updated sd is to be calculated.

UtoX Iso-probabilistic transformation from U space to X space

Description

UtoX performs as iso-probabilistic transformation from standardized space (U) to physical space
(X) according to the NATAF transformation, which requires only to know the means, the standard
deviations, the correlation matrix p(Xi, Xj) = p;; and the marginal distributions of Xi. In stan-
dard space, all random variables are uncorrelated standard normal distributed variables whereas
they are correlated and defined using the following distribution functions: Normal (or Gaussian),
Lognormal, Uniform, Gumbel, Weibull and Gamma.
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Usage

UtoX(U, input.margin, LO)

Arguments

U a matrix containing the realisation of all random variables in U-space

input.margin A list containing one or more list defining the marginal distribution functions of
all random variables to be used

Lo the lower matrix of the Cholesky decomposition of correlation matrix RO (result
of ModifCorrMatrix)

Details
Supported distributions are :
* NORMAL.: distribution, defined by its mean and standard deviation

distX < —list(type =" Norm” /d MEAN =0.0,STD =1.0,NAME ="X1")

* LOGNORMAL: distribution, defined by its internal parameters Pl=meanlog and P2=sdlog
(plnorm)

distX < —list(type =" Lnorm”, P1 = 10.0, P2 =2.0, NAME =7 X2")

UNIFORM: distribution, defined by its internal parameters P1=min and P2=max (punif)

distX < —list(type = "Unif”, P1 = 2.0, P2 = 6.0, NAME =" X3")

GUMBEL. distribution, defined by its internal parameters P1 and P2
distX < —list(type =" Gumbel’, P1 = 6.0, P2 = 2.0, NAME =" X4')
* WEIBULL. distribution, defined by its internal parameters P1=shape and P2=scale (pweibull)

distX < —list(type =" Weibull',P1 = NULL,P2= NULL, NAME =" X5')

GAMMA: distribution, defined by its internal parameters P1=shape and P2=scale (pgamma)

distX < —list(type =" Gamma', P1 = 6.0, P2 = 6.0, NAME =" X¢')

BETA: distribution, defined by its internal parameters P1=shapel and P2=shapze2 (pbeta)

distX < —list(type =" Beta', P1=6.0,P2=6.0, NAME =" X7')

Value

X a matrix containing the realisation of all random variables in X-space

Author(s)
gilles DEFAUX, <gilles.defaux@cea. fr>
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References

* M. Lemaire, A. Chateauneuf and J. Mitteau. Structural reliability, Wiley Online Library, 2009

* V. Dubourg, Meta-modeles adaptatifs pour 1’analyse de fiabilite et I’optimisation sous con-
tainte fiabiliste, PhD Thesis, Universite Blaise Pascal - Clermont 11,2011

See Also

ModifCorrMatrix, ComputeDistributionParameter

Examples

Dim = 2

distX1 <- list(type='Norm', MEAN=0.0, STD=1.0, P1=NULL, P2=NULL, NAME='X1')
distX2 <- list(type='Norm', MEAN=0.0, STD=1.0, P1=NULL, P2=NULL, NAME='X2')

input.margin <- list(distX1,distX2)
input.Rho <- matrix( c(1.0, 0.5,

0.5, 1.0),nrow=Dim)
input.R@ <- ModifCorrMatrix(input.Rho)
Lo <- t(chol(input.R0Q))

1sf = function(U) {
X <- UtoX(U, input.margin, LO)
G <- 5.0 - 0.2x(X[1,]1-X[2,1)*2.0 - (X[1,]1+X[2,1)/sqrt(2.9)

return(G)
3
ud <- as.matrix(c(1.0,-0.5))
1sf(u@)
waarts A limit-state-function defined by Waarts
Description

The limit-state function is defined by:
bl =3+ (u1 — u2)?/10 — sign(uy + uz) * (uy + uz)/sqrt(2)
b2 = sign(ug — u1) * (u1 — ug) + 7/sqri(2)

f(u) = min(b1,02)

Usage

waarts
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Format

The function can handle a vector or matrix with column vectors.

References

Waarts, PH:
An appraisal of DARS: directional adaptive response surface sampling
Delft University Press, The Netherlands, 2000.

WilksFormula Sample size by Wilks formula

Description
Compute Wilks formula for setting size of a i.i.d. sample for quantile estimation with confidence
level or for tolerance intervals

Usage

WilksFormula(alpha=0.95,beta=0.95,bilateral=FALSE,order=1)

Arguments
alpha order of the quantile (default = 0.95)
beta level of the confidence interval (default = 0.95)
bilateral TRUE for bilateral quantile (default = unilateral = FALSE)
order order of the Wilks formula (default = 1)
Value
N The minimal sample size to apply Wilks formula
Author(s)

Paul Lemaitre and Bertrand Iooss

References

H.A. David and H.N. Nagaraja. Order statistics, Wiley, 2003.

W.T. Nutt and G.B. Wallis. Evaluation of nuclear safety from the outputs of computer codes in the
presence of uncertainties. Reliability Engineering and System Safety, 83:57-77, 2004.

S.S. Wilks. Determination of Sample Sizes for Setting Tolerance Limits. Annals Mathematical
Statistics, 12:91-96, 1941.
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Examples

N <- WilksFormula(@.95,0.95,order=1)
print(N)

XtoU From X to standard space

Description
XtoU lets transform datapoint in the original space X to the standard Gaussian space U with iso-
probalisitc transformation.

Usage
XtoU(X, input.margin, L)

Arguments

X the matrix d x n of the input points

input.margin A list containing one or more list defining the marginal distribution functions of
all random variables to be used

Lo the lower matrix of the Cholesky decomposition of correlation matrix RO (result
of ModifCorrMatrix)

Author(s)
Clement WALTER <clement.walter@cea.fr>

See Also

UtoX
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